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Abstract: Due to the anticipated increase in loads, the power grid will encounter the issue 

of system peak loads in the future, which is typically addressed through grid 

reinforcement. However, implementing a flexibility service option can prevent the need 

for grid development. As the overall load continues to rise, the distribution transformer 

becomes overloaded. The presented work focuses on enhancing one of the parameters that 

define the insulation life of the transformer, known as the Loss-of-Life (LOL). Transactive 

approach involves the rescheduling of the battery and photovoltaic generation. Dominated 

Group Search Optimization (DGSO) algorithm is utilized to optimize the objective 

function of reducing the peak transformer load under the power flow and voltage 

constraints of the network. Experimental validation of the proposed method is conducted 

using MATLAB 2018 software. Modified IEEE 34-bus system is used to implement the 

proposed methodology. Numerical results obtained from various cases elucidate that the 

proposed model reduces the LOL of the transformer from 0.0103 to 0.0017p.u. 

Comparative analysis of the proposed method with the already used methods of voltage-

control and Volt-Var control have been presented. 
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1 Introduction 

HE use of Electric Vehicles is increasing daily,  and it 

has been estimated that the number has nearly tripled 

from 2015 to 2020. Also, the predicted Solar PV units 

installed on the rooftop will get three times between 2015 

and 2040 [1]. Residential battery storage systems will 

become 40 times approximately between 2016–2025 [2]. 

The application of battery storage systems is increasing 

due to the inability of Rooftop Solar PV and Electric 

Vehicle charging to coincide with the required capacity. 

A transactive energy control mechanism is required to 

benefit both the Distribution system and the end 

consumer/prosumer [3]. Transformer life degrades due to 

increasing count of the overloading of the transformer [4] 

[5] [6] [7] [8]. Generation from rooftop Solar PV cannot 

lower the transformer overloading due to the lower 
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chronological coincidence between the EV charging and 

PV generation [9]. Also, studies in [10] [11] show that the 

Rooftop Solar PV generation can mitigate the 

transformer’s loss-of-life due to the EV charging up to 

some extent. The work in transactive energy control uses 

power markets to link with the end consumers with a 

limited approach. Transactive control allows smart 

thermostats of the consumers/prosumers to bid in the real-

time power market to reduce losses and maintain the 

system frequency [12] Also, the generation capabilities of 

the consumers improve with the inclusion of the Battery 

Storage system and Rooftop Solar PV systems through 

transactive control. The application of transactive energy 

allows the distribution company to control the consumer 

energy resources without many impacts on EV charging 

[13]. Transactive Energy System provides economic and 

social advantages to residential consumers having Battery 
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Storage systems to reschedule their Battery

System charging/discharging profiles. This, in turn, 

reduces transformer aging and total power losses [14]. 

Table 1 List of Abbreviations 

Abbreviation Definition 

LOL Loss-of-Life 

DG Distributed Generation 

OLTC On-Line Tap Changers 

DGSO Dominated Group Search Optimization 

GSO Group Search Optimization 

VVC Volt-VAr Control 

EV Electric Vehicle 

RTS PV RoofTop Solar PhotoVoltaic 

BESS Battery Energy Storage System 

DSO Distribution System Operator 

NSRDB National Solar Radiation DataBase 

NREL National Renewable Energy Laboratory 

MINLP Mixed-Integer Non-Linear Programming 

1.1 Literature Review 

The distribution sector requires an improved and 

flexible operation to accommodate the increasing number 

of distributed energy resources, as these cause power 

quality issues, reverse power flows, congestion problems, 

and voltage violations [15]. The Distribution system 

operator opts to expand the network for these reasons, but 

the grid extension requires cost and is not environment 

friendly. Demand Response programs are used as a 

distribution system in place of expanding the smart grid 

with demand flexibility [16]. Demand flexibility is 

generally applied for large-scale consumers, but small-

scale consumers are also involved [17] Aggregator 

represents small-scale customers and manages the 

flexibility of operation in power markets [18]. A review 

of transactive energy systems and local energy markets is 

provided to ease the transactions in the regulated market 

[19] This novel market process must coordinate with the 

existing markets in the power sector to overcome the 

negative effects due to the flexibility provision [20]. The 

Demand flexibility mechanism in the energy market is 

developed in concept and definition, and not much work 

is done at the ground level; therefore, a Universal Smart 

Energy Framework (USEF) is proposed in [21] for 

designing various energy products and services, to 

improve the demand flexibility process. An optimization 

problem is initiated in [22] to accommodate the 

Distribution system operator’s flexibility request. This 

problem is designed for an Aggregator, a Smart Energy 

provider, to manage various energy resources. A 

flexibility Clearing house is proposed in [23]to ease the 

integration of small-scale resources in the day-ahead 

market. This helps DSO mitigate the overload and voltage 

fluctuations along with the existing market operation. 

Flexibility services to DSO are based on the traffic light 

control system provided by De-Flex Market. 

Work in [24] minimizes the operational cost and 

initiates a charging strategy for residential premises with 

transformer temperature as the constraint to reduce Loss-

of-life. EV charging is done in the evening, and the impact 

of increased demand on transformer LOL in the presence 

of Rooftop Solar PV is [10]. The effect of EV charging at 

the residential level on the 

life of the distribution transformer along with PV 

generation is considered in [25]. This study demonstrates 

the potential to extend the lifespan of transformers 

through optimal scheduling of electric vehicle (EV) 

charging [26]. The authors of this research investigate the 

feasibility of grid reinforcements from a cost and 

emissions perspective for an electrical network with high 

EV penetration. Their findings suggest that it is possible 

to reduce EV charging costs while staying within the 

current transformer capacity [27]. The article evaluates 

the impact of stochastic EV charging loads on the 

distribution network and concludes that such charging can 

lead to unacceptable voltage drops in load nodes. Due to 

the stochastic nature of EV charging loads, analytical 

modeling methods are impractical, and numerical 

methods are preferred [28]. The acceleration of 

distributional transformer aging resulting from additional 

charging loads from plug-in hybrid electric vehicles is 

evaluated in another study [29]. Probabilistic data-driven 

methods are presented to assess the severity of 

transformer overloading and aging when subjected to 

high levels of EV charging demand coupled with rooftop 

PV generation [30]. The authors of another article 

propose a deep learning approach based on a 

convolutional neural network to predict transformer 

lifespan [31]. The authors of two additional studies assess 

the loss of life (LoL) of transformers in distribution 

networks with individual residential houses and a high 

number of plug- in EVs. They investigate how 

transformer aging can be mitigated through power system 

reinforcement, including local PV generation and battery 

energy storage systems (BESSs) [32] and [33]. The 

results of one study indicate that the presence of PV 

generation in electrical networks with EV chargers can 

decrease transformer LoL, and with a BESS, this positive 

effect is even more significant [30]. 

The other segments included are as follows: Section II 

de- scribes the theory for transformer insulation aging. In 
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Section III, we described the methodology applied in this 

work. In Section IV, we described the experimental 

analysis and results. Finally, Section V concludes the 

study and discusses the future scope of the work. 

2 Problem Formulation 

2.1 Transformer Insulation Aging 

Transformer is one of the essential and costliest 

equipment in the power system. Continuous operation of 

the transformer will increase its temperature. For this 

reason, the performance of distribution transformers will 

deteriorate early and cause the transformer to be replaced 

from use. IEEE Standard C57.91 proposed a model to 

predict the hot spot temperature of the transformer and its 

loss of life. As per IEEE standard C57.91 [8], the LOL of 

the transformer winding is directly proportional to the 

equivalent aging factor. The relation for Loss-of-Life is 

given in Equation (1). 

𝐿𝑂𝐿𝑊(%) = 
𝐹𝐸𝑄𝐴 ∗ 𝑡∗100

𝐿𝑁 
   (1) 

Where LOLW is the transformer LOL for winding w, t is 

the time interval considered for evaluation, LN is the 

normal insulation life of the transformer equal to 1,80,000 

hours and FEQA is the average equivalent aging factor, and 

is defined in Equation (2) as 

𝐹𝐸𝑄𝐴 =  
∑ 𝐹𝐴𝐴

24
𝑡=1

∑ 𝛥𝑇24
𝑡=1

 * 𝞓T   (2) 

The average equivalent aging factor is defined as the 

average of the accelerated aging factor FAA, given in 

Equation (3) as 

𝐹𝐴𝐴 = 𝑒
[
1500

383
 − 

1500

 𝜃_𝐻 + 273
  ]

   (3) 

Accelerated aging factor is based on temperature θH, 

which is the temperature of the hottest point of the 

transformer, defined in Equation (4) as  

𝜃𝐻= 𝜃𝐴 +  𝛥𝜃𝑇𝑂 + 𝛥𝜃𝐻   (4) 

Where θA is the ambient temperature θTO is the 

temperature rise due to oil temperature and θH is the 

temperature rise due to winding IEEE C57.91 

recommends that LOLT is the Loss-of-Life of the winding 

of transformer which deteriorates the most, and   is given 

in Equation (5) as below 

𝐿𝑂𝐿𝑇  (%) = max 𝐿𝑂𝐿𝑤   (5) 

Where W is the set of all transformer winding. It is 

assumed that normal aging occurs at 1100C. If the 

temperature of the hottest spot exceeds 1100C then FAA 

will be greater than 1 and if its temperature is below 

1100C then FAA is smaller than 1. For a 24-hour duty 

cycle, the FEQA has a rating of 1.0 for continuous operation 

at maximum temperature. Therefore, the normal loss of 

life is one day every 24 hours. The range for severity of 

Equivalent Aging of transformer is given in Table 2. 

Table 2 Severity range for various values of equivalent aging 

[34] [6] 

Equivalent Aging range Condition 

FEQA < 0.95 Insignificant 

0.95< FEQA < 1.0 Moderate 

1.0< FEQA < 1.2 Critical 

FEQA > 1.2 Severe 

2.2 Modeling of the various loads 

To include the secondary power line in the system, the 

house load profile, the RTS-PV profile, and the ESS 

profile are described below: 

1. House Load Forecasting Model: The forecasting 

analysis utilizes the electricity demand data from 

Panama’s power system, encompassing various demand 

variations including weekly, monthly, and yearly 

patterns. Additionally, it incorporates seasonal collections 

such as summer, rainy, and winter periods. The variability 

of data is assessed in terms of average and peak values. To 

mitigate the influence of noise and missing data, the data 

is subjected to transformation. The missing attributes are 

fulfilled by utilizing the average value of the data. 

Machine Learning techniques are employed to forecast 

the load. 

2. RTS-PV Forecasting Model: Historical data gathered 

from the National Solar Radiation Database (NSRDB) of 

the National Renewable Energy Laboratory (NREL) is 

used to predict the temperature of each hour for the whole 

day. 

3.  Battery ESS: Battery considered in the analysis is 

Tesla Powerwall battery with a rating of 3.3kW,6.4kWh. 

3 Proposed Methodology 

3.1 Transactive Control Rescheduling 

As the load on the transformer increases, transactive 

energy plays a significant role in minimizing the load on 

the transformer and prolonging its life. The load is 

estimated every hour using a machine learning algorithm 

to take the load of the transformer for 24 hours instantly 

[35].  When the peak load of the transformer increases by 

more than 1p.u.,    the Transactive mechanism adjusts the 

load. In this work, we analyze the benefits of the 

transactive control for improving the life of the 

transformer by evaluating the loss-of-life (LOL). The 

flowchart for the overall methodology used is shown in 

Fig.1. 

For the Transactive control method to be effective, the 

DSO proposes an offer to the consumer/prosumer to act 

(PV and battery scheduling) that will ultimately be 
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accepted or rejected. For the ultimatum game, the buyer’s 

(here, the consumer’s) the best strategy is to get an offer 

whose value is greater than or equal to its present value. 

In this context, all customers determine the economic 

value of their ESS price/discharge or PV output to the 

grid, like their electricity costs. 

The expected outcomes of this study include achieving 

optimal control of batteries and photovoltaic (PV) 

systems, leading to minimized transformer aging, by 

maintaining optimal voltage levels and power flows. 

3.2 Algorithm Applied 

The Dominated Group Search Optimization (DGSO) 

algorithm is an improved version of the traditional 

Group Search Optimization (GSO) algorithm, specifically 

designed to address complex mixed-integer nonlinear 

programming (MINLP) problems more efficiently. In the 

GSO algorithm, the population is categorized into three 

types: producers, scroungers, and rangers. Producers are 

the members with the highest fitness levels, responsible 

for exploring nearby regions in the search space to identify 

better solutions. Scroungers follow the producers, using 

the information provided by them to efficiently exploit the 

search space, thereby refining the search and enhancing 

optimization. Rangers, however, perform random searches 

across the search space, exploring new areas to potentially 

discover better solutions. The movement of rangers within 

the search space is governed by a specific equation that 

determines their path and behavior. The equation 

governing this is given below as Equation (6). 

𝑅𝑖
𝑘+1 =   𝑅𝑖

𝑘 +  𝑙𝑖  𝐷𝑖
𝑘∅𝑘+1,  𝑙𝑖  = 𝑎 ×  𝑟1 × 𝑙𝑚𝑎𝑥  (6) 

where Rk and Dk are the position and direction of ith 

ranger in the kth iteration, respectively. Moreover, ϕ 

represents the random head angle. In addition, li is the 

produced random distance. 

The DGSO algorithm introduces enhancements that 

focus on optimizing the behavior of the scrounger 

members within the group, which are crucial for the 

convergence and efficiency of the optimization process. 

DGSO takes into account the distance of scroungers from 

the producer. Scroungers that are closer to the producer 

are more likely to follow. This approach involves 

classifying scroungers based on their proximity to the 

producer, allowing for more informed decisions about 

whether they should follow the producer or continue their 

random search. To this end, after performing the producing 

and ranging actions, the available scroungers are divided 

according to their distance from the producers. 

Afterwards, each scrounger is prepared to approach to the 

nearest producer as described in Equation (7). 

𝑋𝑠,𝑖
𝐾+1 = 𝑋𝑠,𝑖

𝐾  + 𝑟0|(𝑋𝑃
𝐾  −  𝑋𝑠,𝑖

𝐾  )|,|(𝑋𝑃
𝐾  −  𝑋𝑠,𝑖

𝐾  )| <

|(𝑋𝑝𝑅
𝐾  −  𝑋𝑠,𝑖

𝐾  )| 

𝑋𝑠,𝑖
𝐾+1=𝑋𝑠,𝑖

𝐾 +𝑟0|(𝑋𝑝𝑅
𝐾  −  𝑋𝑠,𝑖

𝐾  )|,|(𝑋𝑝𝑅
𝐾  −  𝑋𝑠,𝑖

𝐾  )| <

|(𝑋𝑃
𝐾  −  𝑋𝑠,𝑖

𝐾  )|      (7) 

Where 𝑋𝑃
𝐾  and 𝑋𝑝𝑅

𝐾  are the producer and the producer of 

rangers in kth iteration, respectively. On the other hand, 

𝑋𝑠,𝑖
𝐾+1 and 𝑋𝑠,𝑖

𝐾  represent the position of ith scrounger 

during two consecutive iterations. r ∈ Rn is a uniform 

random number which is always in the range (0,1). This 

refined tracking mechanism enhances the overall 

accuracy of the search process, facilitating more effective 

exploitation of high- quality solution areas.  

 
Fig. 1 Methodology Flowchart 

3.3 Mathematical formulation 

The transactive control optimization process begins by 

inputting system data into the algorithm. Initially, load 
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flow calculations are performed to establish a baseline 

setup. The results from these calculations are then fed into 

the DGSO algorithm, which evaluates the system’s 

objectives and constraints. In applying the DGSO 

algorithm to optimize a power distribution system 

transformer’s Loss of Life (LoL), typical control variables 

include the battery output power and PV output power. 

The DGSO algorithm iteratively adjusts these control 

variables to minimize the objective function of reducing 

transformer aging while adhering to system constraints. 

This iterative process is repeated, continuously refining 

the control variables, until the primary objective of 

minimizing transformer aging is achieved. 

To reduce the maximum power, the estimated  load  for 

each hour is calculated using the forecast as described in 

Equation (8) ,where 𝑃𝑇
𝑡  is the active power load for the 

transformer T for the time instant t of a T duration , Ph is 

the house load power, Pt is the power produced in RTS-

PV and 𝑃𝑃𝑉
𝑡 , ∑ 𝑃𝐸𝑆𝑆

𝑡
 𝑒𝑠𝑠 ℇ 𝐸𝑆𝑆  is the battery storage system 

power. 

𝑃𝑇
𝑡  = ∑ 𝑃ℎ

𝑡
 ℎ ℇ𝐻  - ∑ 𝑃𝑃𝑉

𝑡
 𝑝 ℇ𝑃𝑉  +∑ 𝑃𝐸𝑆𝑆

𝑡
 𝑒𝑠𝑠 ℇ 𝐸𝑆𝑆  (8) 

In this study, it is assumed that all consumers with 

ESS/PV use their ESS/PV to reduce the electricity bill. To 

reduce the aging of the transformer by Transactive 

control, DSO will bid for all customers using ESS/PV to 

reduce the load on the transformer. DSO sends the offer to 

the customer to reschedule the ESS/PV output as per the 

amount of load on the transformer, to reduce the 

transformer peak load [60]. Consumers aim to use PV 

locally (net metering) to earn electricity bill profit rather 

than selling it to the grid (gross metering). The objective 

of the consumer is to lower the consumer’s monthly 

electricity bill, as described in Equation (9). 

Charging/discharging of the battery and PV selling is 

considered, as the rest of the component in the residential 

load is identical in all the cases. 

𝐶𝑒 =  ∑ 𝐶𝑡
𝑃𝑇

𝑡=1 𝑃𝑡
𝐵𝐸𝑆𝑆 𝞓T   (9) 

𝐶𝑡
𝑃  is the price of the unit electricity (Rs. /kWh) to 

charge battery. T is the total time taken, aT is the time 

duration considered and 𝑃𝑡
𝐵𝐸𝑆𝑆 and 𝐸𝑡

𝐵𝐸𝑆𝑆 is the 

charging/discharging power and energy of the battery for 

time ’t’. The above function is subject to the constraints of 

the battery storage system, as given in Equations (12) and 

(13). 

The objective function is to minimize the equivalent 

aging of the transformer. This is expressed as a non-linear 

function subject to operational constraints. The control 

variables, battery power, and PV output power are integer 

types, making this a mixed-integer non-linear 

programming (MINLP) problem. The function can be 

mathematically formulated as given below in Equation 

(10). 

Min f = 
𝑀𝑎𝑥 (𝑃𝑡𝑟𝑎𝑛𝑠)

𝑃𝑎𝑣𝑔
              (10) 

Where 𝑃𝑎𝑣𝑔 is the average power for the whole day of 

operation, defined in Equation (11) below as, 

𝑃𝑎𝑣𝑔  = 
∑ (𝑃𝑡𝑟𝑎𝑛𝑠,𝑡)𝑇

𝑡=1  

𝑇
              (11) 

Where 𝑃𝑡𝑟𝑎𝑛𝑠,𝑡  is the power output of the transformer at 

hour ’t’. 

This objective function is subject to the following 

constraints of Energy, Power and voltage given in 

Equations (12), (13), (14) and (15). 

        𝑃𝑚𝑖𝑛
𝐵𝐸𝑆𝑆  < 𝑃𝑡

𝐵𝐸𝑆𝑆 < 𝑃𝑚𝑎𝑥
𝐵𝐸𝑆𝑆              (12) 

       𝐸𝑚𝑖𝑛
𝐵𝐸𝑆𝑆 < 𝐸𝑡

𝐵𝐸𝑆𝑆 < 𝐸𝑚𝑎𝑥
𝐵𝐸𝑆𝑆              (13) 

𝑃𝑡𝑟𝑎𝑛𝑠,𝑚𝑖𝑛 < 𝑃𝑡𝑟𝑎𝑛𝑠,𝑡 <  𝑃𝑡𝑟𝑎𝑛𝑠,𝑚𝑎𝑥              (14) 

       𝑉𝑚𝑖𝑛 < V <  𝑉𝑚𝑎𝑥                 (15) 

Where 𝐸𝑚𝑎𝑥
𝐵𝐸𝑆𝑆

 , 𝐸𝑚𝑖𝑛
𝐵𝐸𝑆𝑆, 𝑃𝑚𝑎𝑥

𝐵𝐸𝑆𝑆
 , 𝑃𝑚𝑖𝑛

𝐵𝐸𝑆𝑆
 are the energy and 

power constraints for the battery system. Vmin, Vmax are 

the power flow voltage limits (Normally 0.95 <V<1.05 

p.u.). 𝑃𝑡𝑟𝑎𝑛𝑠,𝑚𝑎𝑥, 𝑃𝑡𝑟𝑎𝑛𝑠,𝑚𝑖𝑛 are the power output 

constraints of the transformer. 

4 Experimental Analysis and Results 

MATLAB software is utilized for time-series 

simulations of load flow in the system. To compute kVA 

flowing through the transformers of the distribution 

system, load flow studies has been carried out in 

conjunction with the optimization routine. Key data 

concerning the distribution system, including transformer 

data, load data, line data, and capacitor data, are input into 

the algorithm. All load flow calculations are conducted 

and the results are subsequently fed into the DGSO 

algorithm, which assesses the necessary objectives and 

identifies any constraint violations. Based on the 

evaluated objective value, the control variables are 

updated for the next iteration. This iterative process 

continues until the desired objective is achieved. Load 

flow analysis is conducted with a sampling interval of one 

hour over a 24-hour period. 

4.1 Modified IEEE 34-bus System 

IEEE 34-bus system is modified and is used for 

simulation. The feeder’s nominal voltage is 24.9 kV.  It is 

characterized by 3-phase 4-wire and single phase, 2-wire 

overhead lines arranged in different configurations. Two 

in-line regulators are required to maintain a good voltage 

profile. Unbalanced loading with both “spot” and 

“distributed” loads are present. Distributed loads are 

assumed to be connected at the center of the line segment. 

Node no.33 with a spot load rating of 22.36kVA is 

modified and replaced with a transformer of 25kVA 

rating. This transformer extends and connects six houses, 

as shown in Figure 2 [7]. Each house contains an average 

house load, one Solar PhotoVoltaic generator (PV), and 

one Battery Energy Storage System (ESS). The ratings 
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and specifications of the Battery are 6.4 kWh (energy), 

3.3 kW (peak power), and 2 kW (continuous power), and 

that of PV are 10 kW (Output power),120 V (output 

voltage). Residential house loading is assumed 6.64kVA 

at each house. 

 
Fig. 2 IEEE 34 bus system 

The efficiency of the design is analyzed by considering 

various combinations of photo voltaic generation and 

battery storage systems, as described in further section. 

4.2 Transformer Loading For various cases 

Case I: Base Case without Transactive Mechanism (No 

PV No Battery): The load on the transformer for each 

hour   for a 24-hour duration is forecast using machine 

learning, and their equivalent aging hours are given in 

Table 2. This case is considered the base case as no 

transactive control is applied here. 

 
Fig. 3 Load on transformer Case I 

Case II: With Battery and PV for Peak load reduction 

Transactive Mechanism: The transformer loads for each 

hour for a 24-hour duration, and then transactive control 

is applied to reduce the peak load on the transformer; their 

equivalent aging hours are given in Table 2. This is the 

second case where RTS-PV and battery are used in 

transactive control to minimize the peak load of the 

transformer. Here peak loading for 6 pm is reduced using 

transactive control. As the peak load is reduced, the 

equivalent aging reduces and finally the Loss-of-life of 

the transformer gets reduced. 

 
Fig. 4 Load on transformer Case II 

Case III: With Battery and PV for Overload reduction 

Transactive Mechanism: The transformer loads for each 

hour for a 24-hour duration, and then transactive control 

is applied to reduce the overload on the transformer; their 

equivalent aging hours are given in Table 4. This is the 

third case where RTS-PV and battery are used in 

transactive control to minimize the overload on the 

transformer. Here overloading between 2 pm to 8 pm is 

reduced using transactive control. As the load   is reduced, 

the equivalent aging reduces and eventually the Loss-of-

life of the transformer gets reduced. 

 
Fig. 5 Load on transformer Case III 

Case IV: Use of Battery only for Transactive 

Mechanism: The transformer loads for each hour for a 24-

hour duration, and then transactive control is applied to 

reduce the overload/peak load on the transformer; their 

equivalent aging hours are given in Table 2. This is the 

fourth case where only the battery is used for transactive 

control optimization. Here the load on the transformer is 

adjusted with the help of a battery storage system. When 

the load on the transformer is on the lower side, the 

battery is charged and discharged when there is a need for 

more power to supply to the loads. As      the load is 

reduced, the equivalent aging reduces and then the Loss-

of-life of the transformer gets reduced. 

Based on the methodology presented in subsection, and 

objective function, the value of DG powers for Battery 

Storage System and Solar Photo voltaic have been 

evaluated.  The CPU time and convergence 

characteristics are the important factors to indicate 

robustness of any algorithm. The number of generations 

considered in the study are 200. The mean CPU time to 

converge the solution in different case were 2.3×104s, 

1.95×104s, 1.73×104s, and 1.61×104s, respectively. 
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Table 3 Load on transformer and the corresponding aging acceleration for various cases 
Hour Case I 

p.u. load 
Case I 
Aging Ac- 
celeration 

Case II 
p.u.load 

Case II 
Aging Acceler- 
ation 

Case III 
p.u.loading 

Case III 
Aging Acceler- 
ation 

Case IV 
p.u.loading 

Case IV 
Aging Accel- 
eration 

1 0.86 0.2026 0.86 0.2026 0.86 0.2026 1 0.0577 

2 0.77 0.0819 0.77 0.0819 0.77 0.0819 1 0.0577 
3 0.73 0.0404 0.73 0.0404 0.73 0.0404 1 0.0577 
4 0.69 0.022 0.69 0.022 0.69 0.022 0.96 0.0513 
5 0.67 0.0134 0.67 0.0134 0.67 0.0134 0.94 0.0455 
6 0.66 0.0091 0.66 0.0091 0.66 0.0091 0.93 0.0455 
7 0.69 0.0091 0.69 0.0091 0.69 0.0091 0.96 0.0513 
8 0.77 0.0118 0.77 0.0118 0.77 0.0118 1 0.0577 
9 0.88 0.022 0.88 0.022 0.88 0.022 1 0.0577 
10 1 0.0577 1 0.0577 1 0.0577 1 0.0577 
11 1.07 0.1295 1.07 0.1295 1.07 0.1295 1.07 0.1295 
12 1.13 0.2526 1.13 0.2526 1.13 0.2526 1 0.0577 
13 1.17 0.4823 1.17 0.4823 1.17 0.4823 1 0.0577 
14 1.21 0.9026 1.21 0.9026 1 0.0577 1 0.0577 
15 1.23 1.499 1.23 1.499 1 0.0577 1 0.0577 
16 1.25 2.2285 1.25 2.2285 1 0.0577 1 0.0577 
17 1.26 2.9845 1.26 2.9845 1 0.0577 1 0.0577 
18 1.26 3.6172 1.26 3.6172 1 0.0577 1 0.0577 
19 1.23 3.2865 1.23 3.2865 1 0.0577 1 0.0577 
20 1.22 3.2865 1.22 3.2865 1 0.0577 1 0.0577 
21 1.18 2.4576 1.18 2.4576 1.18 2.4576 1 0.0577 
22 1.13 1.8296 1.13 1.8296 1.13 1.8296 1 0.0577 
23 1.08 1.1074 1.08 1.1074 1.08 1.1074 1.08 1.1074 

24 1.02 0.6614 1.02 0.6614 1.02 0.6614 1.02 0.6614 

Aging Acceleration 
total 
Equivalent Aging 

 25.1952 
 

1.0498 

 18.7089 
 

0.7795 

 7.7943 
 

0.3247 

 3.0728 
 

0.128 

LOL  0.0139  0.0103  0.0043  0.0017 

 

 
Fig. 6 Load on transformer Case IV 

The total loads supplied by the transformer for all four 

proposed cases are shown in Figure 3 and Figure 4. Here 

Table 2 presents the summary of equivalent aging, daily 

loading and LoL. Base-case results in extensive aging of 

the transformers. It can be seen that there is a significant 

reduction in the aging acceleration in the transformer in 

Case IV. The loading of the transformer is shifted nearer 

to its rated capacity (Case IV). Since, the aging 

acceleration factor varies exponentially with hottest-spot 

temperature, there is a considerable reduction in aging of 

the transformer. The daily equivalent aging for life of the 

Distribution Transformer for the four cases, base-case, 

transactive peak load control, transactive overload control 

and transactive battery rescheduling control are 0.7795, 

0.3247, and 0.128, respectively. 

The hottest-spot temperature variations have a different 

trend as compared to the transformer loading curves. 

 

This is due to the fact that loading is a function of voltage 

and current, whereas temperature rise is the function of 

current only. Effect of any type of control is more 

prominent when load supplied by the transformer 

increases above its rated capacity. With transactive 

control, there is a substantial reduction in aging 

acceleration throughout a day for all the cases. It can be 

seen that the losses inside the transformers are greatly 

affected by the type of Transactive control strategy. The 

transactive control results in a more economical solution 

from the point of view of Distribution Transformer aging.  

4.3 Comparison of proposed method with existing 

techniques 

There are several existing methods for the reduction of 

LoL of the distribution transformers. These methods are 

described below: 

1.    Voltage Control: In this case, voltage control 

devices such as On-Line Tap Changers (OLTC) 

and Regulators are operated such that the 

objective of transformer overload/peak load 

reduction is satisfied. 

2. Volt-VAr Control: In this case, in addition to 

voltage controlling devices, the capacitors 

connected in the system   are also controlled to 

optimize voltage and VAr flow in the system to 
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minimize the objective function without 

violating the system constraints. 

 

3. Transactive Control: In this method, transactive 

control rescheduling of the Distributed 

Generation (DG) is used to minimize the 

objective function of transformer loss of life 

considering the system constraints, as already 

discussed. Due to optimal control of DGs, the 

loading is least in the case of Transactive 

Control. 

A comparative analysis of the LoL of a transformer 

using the transactive control optimization with already 

existing methods in terms of aging acceleration, 

equivalent aging and LOL is summarized in Table 3. 

The results indicate that effect of Transactive Control, 

on the LoL of the transformer, is more prominent as 

compared   to base-case, voltage control and volt-Var 

control cases. It is ascertained that the optimal 

Transactive mechanism results in significant reduction in 

aging rate of the Transformer. 

 
Table 4 Comparison with other existing methods [36] 

S.No. 
/Scheme 

Voltage 
Control 

 

VoltVar 
Control 

Transactive 
Control 

Case 

II 

Transactive 
Control 

Case 

III 

Transactive 
Control 

Case IV 

Aging 

Acceleration 

70.008 45.36 18.708 7.7928 3.072 

Equivalent 

Aging 
2.917 1.89 0.7795 0.3247 0.128 

Transformer 

LOL 
0.0388 0.0252 0.0103 0.0043 0.0017 

5 Conclusion and Future Scope 

The transactive control mechanism for distribution 

system is described in the work involved. This scheme 

improves the distribution transformer life span by 

reducing the load over the transformer for a particular 

duration. Battery energy storage and PV systems are 

applied in control schemes to balance the surplus and 

deficit amount of power, to reduce the Loss-of- life of the 

transformer within the permissible limits. Various 

combinations of battery energy storage systems and PV 

power are considered to show the effectiveness of the 

applied scheme. The proposed methodology is validated 

on modified IEEE 34- bus system with various load 

profiles. 
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